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ABSTRACT 

This article presents a new model for valuing a credit default swap (CDS) contract that is affected 

by multiple credit risks of the buyer, seller and reference entity. We show that default dependency has a 

significant impact on asset pricing. In fact, correlated default risk is one of the most pervasive threats in 

financial markets. We also show that a fully collateralized CDS is not equivalent to a risk-free one. In other 

words, full collateralization cannot eliminate counterparty risk completely in the CDS market. 
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1 Introduction 

There are two primary types of models that attempt to describe default processes in the literature: 

structural models and reduced-form (or intensity) models. Many practitioners in the credit trading arena 

have tended to gravitate toward the reduced-from models given their mathematical tractability.  

Central to the reduced-form models is the assumption that multiple defaults are independent 

conditional on the state of the economy. In reality, however, the default of one party might affect the default 

probabilities of other parties. Collin-Dufresne et al. (2003) and Zhang and Jorion (2007) find that a major 

credit event at one firm is associated with significant increases in the credit spreads of other firms. Giesecke 

(2004), Das et al. (2006), and Lando and Nielsen (2010) find that a defaulting firm can weaken the firms in 

its network of business links. These findings have important implications for the management of credit risk 

portfolios, where default relationships need to be explicitly modeled. 

The main drawback of the conditionally independent assumption or the reduced-form models is 

that the range of default correlations that can be achieved is typically too low when compared with empirical 

default correlations (see Das et al. (2007)). The responses to correct this weakness can be generally 

classified into two categories: endogenous default relationship approaches and exogenous default 

relationship approaches.  

The endogenous approaches include the contagion (or infectious) models and frailty models. The 

frailty models (see Duffie et al. (2009), Koopman et al. (2011), etc) describe default clustering based on 

some unobservable explanatory variables. In variations of contagion or infectious type models (see Davis 

and Lo (2001), Jarrow and Yu (2001), etc.), the assumption of conditional independence is relaxed and 

default intensities are made to depend on default events of other entities. Contagion and frailty models fill 

an important gap but at the cost of analytic tractability. They can be especially difficult to implement for 

large portfolios. 

The exogenous approaches (see Li (2000), Laurent and Gregory (2005), Hull and White (2004), 

Brigo et al. (2011), etc) attempt to link marginal default probability distributions to the joint default 
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probability distribution through some external functions. Due to their simplicity in use, practitioners lean 

toward the exogenous ones. 

Given a default model, one can value a risky derivative contract and compute credit value 

adjustment (CVA) that is a relatively new area of financial derivative modeling and trading. CVA is the 

expected loss arising from the default of a counterparty (see Brigo and Capponi (2008), Lipton and Sepp 

(2009), Pykhtin and Zhu (2006), Gregory (2009), Bielecki et al (2013) and Crepey (2015), Xiao (2015), 

Xiao (2017), etc.) 

Collateralization as one of the primary credit risk mitigation techniques becomes increasingly 

important and widespread in derivatives transactions. According the ISDA (2013), 73.7% of all OTC 

derivatives trades (cleared ad non-cleared) are subject to collateral agreements. For large firms, the figure 

is 80.7%. On an asset class basis, 83.0% of all CDS transactions and 79.2% of all fixed income transactions 

are collateralized. For large firms, the figures are 96.3% and 89.4%, respectively. Previous studies on 

collateralization include Johannes and Sundaresan (2007), Fuijii and Takahahsi (2012), Piterbarg (2010), 

Bielecki, et al (2013) and Hull and White (2014), etc. 

This paper presents a new framework for valuing defaultable financial contracts with or without 

collateral arrangements. The framework characterizes default dependencies exogenously, and models 

collateral processes directly based on the fundamental principals of collateral agreements. For brevity we 

focus on CDS contracts, but many of the points we make are equally applicable to other derivatives. CDS 

has trilateral credit risk, where three parties – buyer, seller and reference entity – are defaultable. 

In general, a CDS contract is used to transfer the credit risk of a reference entity from one party to 

another. The risk circularity that transfers one type of risk (reference credit risk) into another (counterparty 

credit risk) within the CDS market is a concern for financial stability. Some people claim that the CDS 

market has increased financial contagion or even propose an outright ban on these instruments. 

The standard CDS pricing model in the market assumes that there is no counterparty risk. Although 

this oversimplified model may be accepted in normal market conditions, its reliability in times of distress 

has recently been questioned. In fact, counterparty risk has become one of the most dangerous threats to 
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the CDS market. For some time now it has been realized that, in order to value a CDS properly, counterparty 

effects have to be taken into account (see ECB (2009)). 

We bring the concept of comvariance into the area of credit risk modeling to capture the statistical 

relationship among three or more random variables. Comvariance was first introduced to economics by 

Deardorff (1982), who used this measurement to correlate three factors in international trading. Furthermore, 

we define a new statistics, comrelation, as a scaled version of comvariance. Accounting for default 

correlations and comrelations becomes important in determining CDS premia, especially during the credit 

crisis. Our analysis shows that the effect of default dependencies on a CDS premium from large to small 

accordingly is i) the default correlation between the protection seller and the reference entity, ii) the default 

comrelation, iii) the default correlation between the protection buyer and the reference entity, and iv) the 

default correlation between the protection buyer and the protection seller. In particular, we find that the 

default comvariance/comrelation has substantial effects on the asset pricing and risk management, which 

have never been documented. 

There is a significant increase in the use of collateral for CDS after the recent financial crises. Many 

people believe that, if a CDS is fully collateralized, there is no risk of failure to pay. Collateral posting 

regimes are originally designed and utilized for bilateral risk products, e.g., interest rate swap (IRS), but 

there are many reasons to be concerned about the success of collateral posting in offsetting the risk of CDS 

contracts. First, the value of CDS contracts tends to move very suddenly with big jumps, whereas the price 

movements of IRS contracts are far smoother and less volatile than CDS prices. Second, CDS spreads can 

widen very rapidly. Third, CDS contracts have many more risk factors than IRS contracts. In fact, our model 

shows that full collateralization cannot eliminate counterparty risk completely for a CDS contract. 

The rest of this paper is organized as follows: Pricing multilateral defaultable financial contract is 

elaborated on in Section 2; numerical results are provided in Section 3; the conclusions are presented in 

Section 4. All proofs and some detailed derivations are contained in the appendices. 

 

2 Pricing Financial Contracts Subject to Multiple Credit Risks 
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We consider a filtered probability space (  , F ,  
0ttF , P ) satisfying the usual conditions, 

where   denotes a sample space, F  denotes a  -algebra, P  denotes a probability measure, and  
0ttF  

denotes a filtration. 

In the reduced-form approach, the stopping (or default) time i  of firm i is modeled as a Cox arrival 

process (also known as a doubly stochastic Poisson process) whose first jump occurs at default and is 

defined by, 

 it

sii HdsZsht = 0
),(:inf          (1) 

where )(thi  or ),( ti Zth  denotes the stochastic hazard rate or arrival intensity dependent on an exogenous 

common state tZ , and iH  is a unit exponential random variable independent of tZ . 

It is well-known that the survival probability from time t to s in this framework is defined by 






−== 

s

t
itii duuhZtsPstp )(exp),|(:),(      (2a) 

 The default probability for the period (t, s) in this framework is given by 






−−=−== 

s

t
iitii duuhstpZtsPstq )(exp1),(1),|(:),(          (2b) 

There is ample evidence that corporate defaults are correlated. The default of a firm’s counterparty 

might affect its own default probability. Thus, default correlation/dependence occurs due to the 

counterparty relations.  

The interest in the financial industry for the modeling and pricing of multilateral defaultable 

instruments arises mainly in two respects: in the management of credit risk at a portfolio level and in the 

valuation of credit derivatives. Central to the valuation and risk management of credit derivatives and risky 

portfolios is the problem of default relationship.  

Let us discuss a three-party case first. A CDS is a good example of a trilateral defaultable instrument 

where the three parties are counterparties A, B and reference entity C. In a standard CDS contract one party 

purchases credit protection from another party, to cover the loss of the face value of a reference entity 
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following a credit event. The protection buyer makes periodic payments to the seller until the maturity date 

or until a credit event occurs. A credit event usually requires a final accrual payment by the buyer and a 

loss protection payment by the protection seller. The protection payment is equal to the difference between 

par and the price of the cheapest to deliver (CTD) asset of the reference entity on the face value of the 

protection. 

A CDS is normally used to transfer the credit risk of a reference entity between two counterparties. 

The contract reduces the credit risk of the reference entity but gives rise to another form of risk: 

counterparty risk. Since the dealers are highly concentrated within a small group, any of them may be too 

big to fail. The interconnected nature, with dealers being tied to each other through chains of OTC 

derivatives, results in increased contagion risk. Due to its concentration and interconnectedness, the CDS 

market seems to pose a systemic risk to financial market stability. In fact, the CDS is blamed for playing a 

pivotal role in the collapse of Lehman Brothers and the disintegration of AIG.  

For years, a widespread practice in the market has been to mark CDS to market without taking the 

counterparty risk into account. The realization that even the most prestigious investment banks could go 

bankrupt has shattered the foundation of the practice. It is wiser to face frankly the real complexities of 

pricing a CDS than to indulge in simplifications that have proved treacherous. For some time now it has 

been realized that, in order to value a CDS properly, counterparty effects have to be taken into account. 

Let A denote the protection buyer, B denote the protection seller and C denote the reference entity. 

The binomial default rule considers only two possible states: default or survival. Therefore, the default 

indicator jY  for firm j (j = A or B or C) follows a Bernoulli distribution, which takes value 1 with default 

probability jq , and value 0 with survival probability jp . The marginal default distributions can be 

determined by the reduced-form models. The joint distributions of a multivariate Bernoulli variable can be 

easily obtained via the marginal distributions by introducing extra correlations. The joint probability 

representations of a trivariate Bernoulli distribution (see Teugels (1990)) are given by 

ABCBCAACBABCCBACBA ppppppYYYPp  −+++===== )0,0,0(:000   (3a) 
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ABCBCAACBABCCBACBA qppppqYYYPp  ++−−===== )0,0,1(:100   (3b) 

ABCBCAACBABCCBACBA pqppqpYYYPp  +−+−===== )0,1,0(:010   (3c) 

ABCBCAACBABCCBACBA ppqqppYYYPp  +−−+===== )1,0,0(:001   (3d) 

ABCBCAACBABCCBACBA qqppqqYYYPp  −−−+===== )0,1,1(:110   (3e) 

ABCBCAACBABCCBACBA qpqqpqYYYPp  −−+−===== )1,0,1(:101   (3f) 

ABCBCAACBABCCBACBA pqqqqpYYYPp  −+−−===== )1,1,0(:011   (3g) 

ABCBCAACBABCCBACBA qqqqqqYYYPp  ++++===== )1,1,1(:111   (3h) 

where 

( )))()((: CCBBAAABC qYqYqYE −−−=      (3i) 

Equation (3) tells us that the joint probability distribution of three defaultable parties depends not 

only on the bivariate statistical relationships of all pair-wise combinations (e.g., 
ij ) but also on the 

trivariate statistical relationship (e.g., ABC ). ABC  was first defined by Deardorff (1982) as comvariance, 

who use it to correlate three random variables that are the value of commodity net imports/exports, factor 

intensity, and factor abundance in international trading. 

We introduce the concept of comvariance into credit risk modeling arena to exploit any statistical 

relationship among multiple random variables. Furthermore, we define a new statistic, comrelation, as a 

scaled version of comvariance (just like correlation is a scaled version of covariance) as follows: 

Definition 1: For three random variables AX , BX , and CX , let A , B , and C  denote the means of 

AX , BX , and CX . The comrelation of AX , BX , and CX  is defined by 

 

3 333

))()((

CCBBAA

CCBBAA
ABC

XEXEXE

XXXE






−−−

−−−
=         (4) 

 According to the Holder inequality, we have 
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( )

3
333

))()(())()((

CCBBAA

CCBBAACCBBAA

XEXEXE

XXXEXXXE





−−−

−−−−−−
   (5) 

Obviously, the comrelation is in the range of [-1, 1]. Given the comrelation, Equation (3i) can be 

rewritten as 

( )

3 222222

3 333

)()()(

))()((:

CCCCBBBBAAAAABC

CCBBAAABCCCBBAAABC

qpqpqpqpqpqp

qYEqYEqYEqXqYqYE

+++=

−−−=−−−=




     (6) 

where 
jj qYE =)(  and )( 22

3

jjjjjj qpqpqYE +=− ,  j=A, B, or C. 

If we have a series of n measurements of AX , BX , and CX  written as Aix , Bix and Cix  where i 

= 1,2,…,n,  the sample comrelation coefficient can be obtained as: 

3
1

3

1

3

1

3

1
))()((





===

=

−−−

−−−
=

n

i CCi

n

i BBi

n

i AAi

n

i CCiBBiAAi

ABC

xxx

xxx




    (7) 

 More generally, we define the comrelation in the context of n random variables as 

Definition 2: For n random variables  1X , 2X ,…, nX , let i  denote the mean of iX  where i=1,..,n. 

The comrelation of 1X , 2X ,…, nX   is defined as 

 

n n

nn

nn

nn
n

XEXEXE

XXXE






−−−

−−−
=

2211

2211
...12

)())((
        (8) 

Correlation is just a specific case of comrelation where n = 2. Again, the comrelation n...12  is in 

the range of [-1, 1] according to the Holder inequality. 

2.1  Risky valuation without collateralization 

Recovery assumptions are important for pricing credit derivatives. If the reference entity under a 

CDS contract defaults, the best assumption, as pointed out by J. P. Morgan (1999), is that the recovered 
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value equals the recovery rate times the face value plus accrued interest1. In other words, the recovery of 

par value assumption is a better fit upon the default of the reference entity, whereas the recovery of market 

value assumption is a more suitable choice in the event of a counterparty default2. 

Let valuation date be t. Suppose that a CDS has m scheduled payments represented as 

),( 1 iii TTsNX −−=   with payment dates 1T ,…, mT  where i=1,,,,m, ),( 1 ii TT −  denotes the accrual factor for 

period ),( 1 ii TT − , N denotes the notional/principal, and s denotes the CDS premium. Party A pays the 

premium/fee to party B if reference entity C does not default. In return, party B agrees to pay the protection 

amount to party A if reference entity C defaults before the maturity. We have the following proposition. 

Proposition 1: The value of the CDS is given by 

( )  ( )    = −−

−

= +=

−

= + +=
m

i iiii

i

j jj

m

i i

i

j jj TTRTTTTOEXTTOEtV
1 11

2

0 11

1

0 1 ),(),(),(),()( tt FF              (9a) 

where 0Tt =  and 

( ) ( ) ),(1),(1),( 10)(10)(1 1111 +++++ ++++
+= jjAXTVjjBXTVjj TTTTTTO

jjjj
        (9b) 



( )
( ) ( ) 
( ) ( ) 

( ) ),()()()(1),(

)()(),()(1),(),(

)()(),()(1),(),(

)()()(1),(),(

)(),(),(),()(),(),(),(

)(),(),(),(),(),(),(),(

11111

111111

111111

11111

11111111

11111111

+++++

++++++

++++++

+++++

++++++++

++++++++

+−+−+

−+−+

−+−+

+−−+

++

+=

jjjAjABjAjjABC

jABjAjjAjAjjAjjBC

jABjAjjBjAjjBjjAC

jABjAjAjjABjjC

jABjjCjjBjjAjAjjCjjBjjA

jAjjCjjBjjAjjCjjBjjAjjA

TTDTTTTT

TTTTqTTTpTT

TTTTqTTTpTT

TTTTTTTp

TTTpTTqTTqTTTpTTqTTp

TTTpTTpTTqTTpTTpTTpTT













     (9c) 

 
1 In the market, there is an average accrual premium assumption, i.e., the average accrued premium is half 

the full premium due to be paid at the end of the premium. 

2 Three different recovery models exist in the literature. The default payoff is either i) a fraction of par 

(Madan and Unal (1998)), ii) a fraction of an equivalent default-free bond (Jarrow and Turnbull (1995)), or 

iii) a fraction of market value (Duffie and Singleton (1999)). 
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

( )
( ) ( ) 
( ) ( ) 

( ) ),()()()(1),(

)()(),()(1),(),(

)()(),()(1),(),(

)()()(1),(),(

)(),(),(),()(),(),(),(

)(),(),(),(),(),(),(),(

11111

11111

111111

11111

11111111

11111111

+++++

+++++

++++++

+++++

++++++++

++++++++

+−+−+

−+−+

−+−+

+−−+

++

+=

jjjBjABjBjj

jABjBjjAjBjjAjjBC

jABjBjjBjBjjBjjAC

jABjBjBjjABjjC

jABjjCjjBjjAjBjjCjjBjjA

jBjjCjjBjjAjjCjJBjjAjjB

TTDTTTTT

TTTTqTTTpTT

TTTTqTTTpTT

TTTTTTTp

TTTpTTqTTqTTTpTTqTTp

TTTpTTpTTqTTpTTpTTpTT













    (9d) 



( )
( ) ( ) 
( ) ( ) 

( ) ),()()()(1),(

)()(),()(1),(),(

)()(),()(1),(),(

)()()(1),(),(

)(),(),(),()(),(),(),(

)(),(),(),(),(),(),(),(

11111

111111

111111

11111

11111111

11111111

+++++

++++++

++++++

+++++

++++++++

++++++++

−+−+

−+−−

−+−−

+−−+

++

+=

jjjBjABjBjjABC

jABjBjjAjBjjAjjBC

jABjBjjBjBjjBjjAC

jABjBjBjjABjjC

jABjjCjjBjjAjBjjCjjBjjA

jBjjCjjBjjAjjCjjBjjAjj

TTDTTTTT

TTTTqTTTpTT

TTTTqTTTpTT

TTTTTTTq

TTTqTTqTTqTTTqTTqTTp

TTTqTTpTTqTTqTTpTTpTT













    (9e) 

where ( )( )),()(1),( 111 +++ −−= jjjCjj TTTNTTR  , 2/),(),( 1 TTsNTT Sjj  =+
, and ),( 1+−= jji TTsNX  . 

Proof: See the Appendix. 

We may think of ),( TtO  as the risk-adjusted discount factor for the premium and ),( Tt  as the risk-

adjusted discount factor for the default payment. Proposition 1 says that the pricing process of a multiple-

payment instrument has a backward nature since there is no way of knowing which risk-adjusted 

discounting rate should be used without knowledge of the future value. Only on the maturity date, the value 

of an instrument and the decision strategy are clear. Therefore, the evaluation must be done in a backward 

fashion, working from the final payment date towards the present. This type of valuation process is referred 

to as backward induction.  

Proposition 1 provides a general form for pricing a CDS. Applying it to a particular situation in 

which we assume that counterparties A and B are default-free, i.e., 1=jp ,  0=jq , 0=kl , and 0=ABC , 

where j=A or B and  k, l=A, B, or C, we derive the following corollary. 

Corollary 1: If counterparties A and B are default-free, the value of the CDS is given by 

( )  ( ) 
   

  

= −−−=

= −−

−

= +=

−

= +

+=

+=

m

i iiiiCiCi

m

i iiCi

m

i iiii

i

j jj

m

i i

i

j jj

TTRTTqTtpTtDEXTtpTtDE

TTRTTTTOEXTTOEtV

1 1111

1 11

2

0 11

1

0 1

),(),(),(),(),(),(

),(),(),(),()(

tt

tt

FF

FF
          (10) 

where ),(),(),( 111 iiCiiii TTpTTDTTO −−− = ; ),(),(),( 111 iiCiiii TTqTTDTT −−− = . 
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The proof of this corollary becomes straightforward according to Proposition 1 by setting kl =0, 

0=AB , 0=ABC , 1=jp , 0=jq , 
−

= +=
1

0 1),(),(
i

g ggiC TTpTtp , and 
−

= +=
1

0 1),(),(
i

g ggi TTDTtD .  

If we further assume that the discount factor and the default probability of the reference entity are 

uncorrelated and the recovery rate C  is constant, we have 

Corollary 2: Assume that i) counterparties A and B are default-free, ii) the discount factor and the default 

probability of the reference entity are uncorrelated; iii) the recovery rate C  is constant; the value of the 

CDS is given by 

( )( )  = −= −−− −−−=
m

i iiici

m

i iiCiiCiCi TTsNTtpTtPTTNTTqTtpTtPtV
1 11 111 ),(),(),(),(1),(),(),()(        (11) 

where  tii TtDETtP F),(),( =  denotes the bond price,  tF),(),( icic TtpETtp = , ),(1),( icic TtpTtq −= , 

),(),(),(),( 111 iiiii TtpTtpTTqTtp −= −−− . 

This corollary is easily proved according to Corollary 1 by setting      ttt YEXEXYE FFF =  

when X and Y are uncorrelated. Corollary 2 is the formula for pricing CDS in the market. 

 Our methodology can be extended to the cases where the number of parties 4n . A generating 

function for the (probability) joint distribution (see details in Teugels (1990)) of n-variate Bernoulli can be 

expressed as 

)(

1

1

1

1)(

1

1

1

1

1

1
n

n

n

n

nn

q

p

q

p

q

p
p 







 −








 −








 −
=

−

−
   (12) 

where   denotes the Kronecker product;  )()( n
k

n pp =  and  )()( n
k

n  =  are vectors containing n2  

components: 
nkkk

n
k pp ,...,,

)(

21
= ,  =

−+=
n

i

i
ikk

1

121 ,  1,0ik ; ( )( ) =
−==

n

i

k
iikkk

n
k

i

n
qYE

1,...,,
)(

21
 . 

2.2  Risky valuation with collateralization 

Collateralization is the most important and widely used technique in practice to mitigate credit risk. 

The posting of collateral is regulated by the Credit Support Annex (CSA) that specifies a variety of terms 

including the threshold, the independent amount, and the minimum transfer amount (MTA), etc. The 
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threshold is the unsecured credit exposure that a party is willing to bear. The minimum transfer amount is 

the smallest amount of collateral that can be transferred. The independent amount plays the same role as 

the initial margin (or haircuts). 

In a typical collateral procedure, a financial instrument is periodically marked-to-market and the 

collateral is adjusted to reflect changes in value. The collateral is called as soon as the mark-to-market 

(MTM) value rises above the given collateral threshold, or more precisely, above the threshold amount plus 

the minimum transfer amount. Thus, the collateral amount posted at time t is given by 



 −

=
otherwise

tHtViftHtV
tC

0

)()()()(
)(         (13) 

where )(tH is the collateral threshold. In particular, 0)( =tH corresponds to full-collateralization3; 0H  

represents partial/under-collateralization; and 0H  is associated with over-collateralization. Full 

collateralization becomes increasingly popular at the transaction level. In this paper, we focus on full 

collateralization only, i.e., )()( tVtC = . 

The main role of collateral should be viewed as an improved recovery in the event of a counterparty 

default. According to Bankruptcy law, if there has been no default, the collateral is returned to the collateral 

giver by the collateral taker. If a default occurs, the collateral taker possesses the collateral. In other words, 

collateral does not affect the survival payment; instead, it takes effect on the default payment only. 

According to the ISDA (2013), almost all CDSs are fully collateralized. Many people believe that 

full collateralization can eliminate counterparty risk completely for CDS.  

Collateral posting regimes are originally designed and utilized for bilateral risk products, e.g., IRS, 

but there are many reasons to be concerned about the success of collateral posting in offsetting the risks of 

CDS contracts. First, the values of CDS contracts tend to move very suddenly with big jumps, whereas the 

 
3 There are three types of collateralization: Full-collateralization is a process where the posting of collateral 

is equal to the current MTM value. Partial/under-collateralization is a process where the posting of collateral 

is less than the current MTM value. Over-collateralization is a process where the posting of collateral is 

greater than the current MTM value. 
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price movements of IRS contracts are far smoother and less volatile than CDS prices. Second, CDS spreads 

can widen very rapidly. The amount of collateral that one party is required to provide at short notice may, 

in some cases, be close to the notional amount of the CDS and may therefore exceed that party’s short-term 

liquidity capacity, thereby triggering a liquidity crisis. Third, CDS contracts have many more risk factors 

than IRS contracts.  

We assume that a CDS is fully collateralized, i.e., the posting of collateral is equal to the amount 

of the current MTM value: )()( tVtC = . For a discrete one-period (t, u) economy, there are several possible 

states at time u: i) A, B, and C survive with probability 000p . The instrument value is equal to the market 

value )(uV ; ii) A and B survive, but C defaults with probability 001p . The instrument value is the default 

payment )(uR ; iii) For the remaining cases, either or both counterparties A and B default. The instrument 

value is the future value of the collateral ),(/)( utDtV  (Here we consider the time value of money only). 

The value of the collateralized instrument at time t is the discounted expectation of all the payoffs and is 

given by 



( )  
( ) ( )  t

t

F

F

)(),(),(1)(),()(),(),(

),(/)(),(),(),(),(),(),(

)(),()(),(),()(

001000001000

111011101110010100

001000

tVutputpuRutpsVutputDE

utDtVutputputputputputp

uRutpuVutputDEtV

−−++=

++++++

+=

    (14a) 

or 

( ) 
( ) ( )
( )( ) t

t

F

F

),(),(),(),(),()()(),(

),(),(),()(),()(),(),(

)(),(),(),(

utututpututpuRuVutD

ututputpuRutquVutputDE

tVututputpE

ABCBCAACB

ABBACC

ABBA







−+−+

++=

+

    (14b) 

If we assume that ( )),(),(),( ututputp ABBA +  and ( ))(),()(),(),( uRutquVutputD CC +  are 

uncorrelated, we have 

),(/),()()( ututtVtV ABABC
F +=          (15a) 

where  

  tF)(),()(),(),()( uRutquVutputDEtV CC
F +=       (15b) 
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  tF),(),(),(),( ututputpEut ABBAAB  +=       (15c) 

( )( )  tF)()(),(),(),(),(),(),(),( uRuVutututpututputDEut ABCBCAACBABC −−+=     (15d) 

The first term )(tV F
 in equation (15) is the counterparty-risk-free value of the CDS and the second 

term is the exposure left over under full collateralization, which can be substantial.  

Proposition 2: If a CDS is fully collateralized, the risky value of the CDS is NOT equal to the counterparty-

risk-free value, as shown in equation (15). 

Proposition 2 or equation (15) provides a theoretical explanation for the failure of full 

collateralization in the CDS market. It tells us that under full collateralization the risky value is in general 

not equal to the counterparty-risk-free value except in one of the following situations: i) the market value 

is equal to the default payment, i.e., )()( uRuV = ; ii) firms A, B, and C have independent credit risks, i.e., 

ij =0  and 0=ABC ; or iii) the following relationship holds ABCBCAACB pp  =+ . 

 

3 Numerical Results 

Our goal in this section is to study the quantitative relationship between CDS premia and the credit 

quality of counterparties and reference entities, including the default correlations and comrelations. 

In our study, we choose a new 5-year CDS with a quarterly payment frequency. Two counterparties 

are denoted as A and B. Counterparty A buys a protection from counterparty B. All calculations are from 

the perspective of party A. By definition, a breakeven CDS spread is a premium that makes the market value 

of a given CDS at inception zero.  

The current (spot) market data are shown in Table 1 provide by FinPricing (2018). Assume that the 

reference entity C has an “A+200bps” credit quality throughout this subsection. The 5-year counterparty-

risk-free CDS premium is 0.027 (equals the 5-year ‘A’ rated CDS spread in Table 1 plus 200 basis points). 
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Since the payoffs of a CDS are mainly determined by credit events, we need to characterize the 

evolution of the hazard rates. Here we choose the Cox-Ingersoll-Ross (CIR) model. The CIR process has 

been widely used in the literature of credit risk and is given by 

tttt dWhdthbadh +−= )(      (16) 

where a denotes the mean reversion speed, b denotes the long-term mean, and   denotes the volatility. 

 

Table 1: Current/spot market data  

This table displays the current (spot) market data used for all calculations in this paper, including the term 

structure of continuously compounded interest rates, the term structure of A-rated breakeven CDS spreads, 

and the curve of at-the-money caplet volatilities. 

Term (days) 31 91 182 365 548 730 1095 1825 2555 3650 5475 

Interest Rate 
0.002

8 

0.002

7 

0.002

9 

0.004

3 

0.007

1 

0.010

2 
0.016 

0.024

9 

0.030

6 

0.035

5 

0.040

5 

Credit Spread 
0.004

2 

0.004

2 

0.004

2 

0.004

5 

0.004

9 

0.005

2 

0.005

8 
0.007 

0.007

9 

0.009

1 

0.010

6 

Caplet 

Volatility 

0.326

7 
0.331 

0.337

6 

0.350

9 

0.364

1 

0.377

3 
0.308 

0.247

3 

0.214

1 

0.167

8 

0.163

4 

 
 

Table 2: Risk-neutral parameters for CIR model 

This table presents the risk-neutral parameters that are calibrated to the current market shown in Table 1. 

‘A+100bps’ represents a ‘100 basis points’ parallel shift in the A-rated CDS spreads. 

Credit Quality A A+100bps A+200bps A+300bps 

Long-Term Mean a  0.035 0.056 0.077 0.099 

Mean Reverting Speed b 0.14 0.18 0.25 0.36 

Volatility   0.022 0.028 0.039 0.056 
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 The calibrated parameters are shown in table 2. We assume that interest rates are deterministic and 

select the regression-based Monte-Carlo simulation (see Longstaff and Schwartz (2001)) to perform risky 

valuation.  

We first assume that counterparties A, B, and reference entity C have independent default risks, i.e., 

0===== ABCABBCACAB  , and examine the following cases: i) B is risk-free and A is risky; and 

ii) A is risk-free and B is risky. We simulate the hazard rates using the CIR model and then determine the 

appropriate discount factors according to Proposition 1. Finally we calculate the prices via the regression-

based Monte-Carlo method. The results are shown in Table 3 and 4. 

 

Table 3: Impact of the credit quality of the protection buyer on CDS premia 

This table shows how the CDS premium increases as the credit quality of party A decreases. The 1st data 

column represents the counterparty-risk-free results. For the remaining columns, we assume that party B is 

risk-free and party A is risky. ‘A+100bps’ represents a ‘100 basis points’ parallel shift in the A-rated CDS 

spreads. The results in the row ‘Difference from Risk-Free’ = current CDS premium – counterparty-risk-

free CDS premium. 

Credit Quality 
Party A - A A+100bps A+200bps A+300bps 

Party B - - - - - 

CDS premium 0.027 0.02703 0.02708 0.02713 0.02717 

Difference from Risk-Free 0 0.003% 0.008% 0.013% 0.017% 

 

 

Table 4: Impact of the credit quality of the protection seller on CDS premia 

This table shows the decrease in the CDS premium with the credit quality of party B. The 1st data column 

represents the counterparty-risk-free results. For the remaining columns, we assume that party A is risk-free 

and party B is risky. ‘A+100bps’ represents a ‘100 basis points’ parallel shift in the A-rated CDS spreads. 

The results in the row ‘Difference from Risk-Free’ = current CDS premium – counterparty-risk-free CDS 

premium. 
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Credit Quality 
Party A - - - - - 

Party B - A A+100bps A+200bps A+300bps 

CDS premium 0.027 0.02695 0.02687 0.0268 0.02672 

Difference from Risk-Free 0.00% -0.005% -0.013% -0.020% -0.028% 

 
 

From table 3 and 4, we find that a credit spread of about 100 basis points maps into a CDS premium 

of about 0.4 basis points for counterparty A and about -0.7 basis points for counterparty B. The credit impact 

on the CDS premia is approximately linear. As would be expected, i) the dealer’s credit quality has a larger 

impact on CDS premia than the investor’s credit quality; ii) the higher the investor’s credit risk, the higher 

the premium that the dealer charges; iii) the higher the dealer’s credit risk, the lower the premium that the 

dealer asks. Without considering default correlations and comrelations, we find that, in general, the impact 

of counterparty risk on CDS premia is relatively small. This is in line with the empirical findings of Arora, 

Gandhi, and Longstaff (2009). 

 

Figure 1: Impact of default correlations and comrelation on CDS premia 

Each curve in this figure illustrates how CDS premium changes as default correlations and comrelation 

move from -1 to 1. For instance, the curve ‘cor_BC’ represents the sensitivity of the CDS premium to 

changes in the correlation BC  when 0=== ABCACAB  .  



 17 

 

 

Next, we study the sensitivity of CDS premia to changes in the joint credit quality of associated 

parties. Sensitivity analysis is a very popular way in finance to find out how the value and risk of an 

instrument/portfolio changes if risk factors change. One of the simplest and most common approaches 

involves changing one factor at a time to see what effect this produces on the output. We are going to 

examine the impacts of the default correlations AB , AC , BC , and the comrelation ABC  separately. 

Assume that party A has an ‘A+100bps’ credit quality and party B has an ‘A’ credit quality. The 5-year 

risky CDS premium is calculated as 0.02703. 

Assume 
AB =0.5. The impact diagrams of the default correlations and comrelation are shown in 

Figure 1. From this graph, we can draw the following conclusions: First, the CDS premium and the default 

correlations/comrelation have a negative relation. Intuitively, a protection seller who is positively correlated 

with the reference entity (a wrong way risk) should charge a lower premium for selling credit protection. 

Next, the impacts of the default correlations and comrelation are approximately linear. Finally, the 

sensitivity slopes of the CDS premium to the default correlations and comrelation are -0.06 to AB ; -0.09 

to AC ; -53 to BC ; and -14 to ABC . Slope measures the rate of change in the premium as a result of a 

Impact of Default Correlations and Comrelation on CDS Premia
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change in the default dependence. For instance, a slope of -53 implies that the CDS premium would have 

to decrease by 53 basis points when a default correlation/comrelation changes from 0 to 1.  

As the absolute value of the slope increases, so does the sensitivity. The results illustrate that BC  

has the largest effect on CDS premia. The second biggest one is ABC . The impacts of AB  and AC  are 

very small. In particular, the effect of the comrelation is substantial and has never been studies before. A 

natural intuition to have on CDS is that the party buying default protection should worry about the default 

correlations and comrelation. 

 

4 Conclusion 

This article presents a new valuation framework for pricing financial instruments subject to credit 

risk. In particular, we focus on modeling default relationships.  

To capture the default relationships among more than two defaultable entities, we introduce a new 

statistic: comrelation, an analogue to correlation for multiple variables, to exploit any multivariate statistical 

relationship. Our research shows that accounting for default correlations and comrelations becomes 

important, especially under market stress. The existing valuation models in the credit derivatives market, 

which take into account only pair-wise default correlations, may underestimate credit risk and may be 

inappropriate. 

We study the sensitivity of the price of a defaultable instrument to changes in the joint credit quality 

of the parties. For instance, our analysis shows that the effect of default dependence on CDS premia from 

large to small is the correlation between the protection seller and the reference entity, the comrelation, the 

correlation between the protection buyer and the reference entity, and the correlation between the protection 

buyer and the protection seller. 

The model shows that a fully collateralized CDS is not equivalent to a risk-free one. Therefore, we 

conclude that collateralization designed to mitigate counterparty risk works well for financial instruments 

subject to bilateral credit risk, but fails for ones subject to multilateral credit risk.  
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Appendix 

Proof of Proposition 1. Let 0Tt = . On the first payment date 1T , let )( 1TV  denote the market 

value of the CDS excluding the current cash flow 1X . There are a total of eight ( 82 3 = ) possible states 

shown in Table A_1.  

 

Table A_1. Payoffs of a trilaterally defaultable CDS 

This table shows all possible payoffs at time 1T . In the case of 0)( 11 + XTV  where )( 1TV  is the market 

value excluding the current cash flow 1X , there are a total of eight ( 82 3 = ) possible states: i) A, B, and C 

survive with probability 000p . The instrument value equals the market value: 
11)( XTV + . ii) A defaults, but 

B and C survive with probability 100p . The instrument value is a fraction of the market value: 

( )111 )()( XTVTB +  where B  represents the non-default recovery rate of party B4. B =0 represents the 

one-way settlement rule, while B =1 represents the two-way settlement rule. iii) A and C survive, but B 

defaults with probability 010p . The instrument value is given by ( )111 )()( XTVTB +  where B  represents 

the default recovery rate of defaulting party B. iv) A and B survive, but C defaults with probability 001p . 

The instrument value is the default payment: ),( 10 TTR . v) A and B default, but C survives with probability 

110p . The instrument value is given by ( )111 )()( XTVTAB +  where AB  denotes the joint recovery rate 

 
4 There are two default settlement rules in the market. The one-way payment rule was specified by the 

early ISDA master agreement. The non-defaulting party is not obligated to compensate the defaulting party 

if the remaining market value of the instrument is positive for the defaulting party. The two-way payment 

rule is based on current ISDA documentation. The non-defaulting party will pay the full market value of 

the instrument to the defaulting party if the contract has positive value to the defaulting party. 
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when both parties A and B default simultaneously. vi) A and C default, but B survives with probability 101p

. The instrument value is a fraction of the default payment: ( )10 ,)( TTRTB
. vii) B and C default, but A 

survives with probability 011p , The instrument value is given by ( )10 ,)( TTRTB
. viii) A, B, and C default 

with probability 111p . The instrument value is given by ( )10 ,)( TTRTAB . A similar logic applies to the case 

of 0)( 11 + XTV .  

Status Probability Payoff if 0)( 11 + XTV  Payoff if 0)( 11 + XTV  

0,0,0 === CBA YYY  000p  11)( XTV +  
11)( XTV +  

0,0,1 === CBA YYY  100p  ( )111 )()( XTVTB +  ( )111 )()( XTVTA +  

0,1,0 === CBA YYY  010p  ( )111 )()( XTVTB +  ( )111 )()( XTVTA +  

1,0,0 === CBA YYY  001p  ),( 10 TTR  ),( 10 TTR  

0,1,1 === CBA YYY  110p  ( )111 )()( XTVTAB +  ( )111 )()( XTVTAB +  

1,0,1 === CBA YYY  101p  ( )10 ,)( TTRTB  ( )10 ,)( TTRTB  

1,1,0 === CBA YYY  011p  ( )10 ,)( TTRTB  ( )10 ,)( TTRTB  

1,1,1 === CBA YYY  111p  ( )10 ,)( TTRTAB  ( )10 ,)( TTRTAB  

 

The risky price is the discounted expectation of the payoffs and is given by 
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where 

),(1),(1),( 100))((100))((10 1111
TTTTTTO AXTVBXTV  ++ +=   (A1b) 
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Similarly, we have 
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 By recursively deriving from 2T  forward over mT , where mm XTV =)( , we have 
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