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ABSTRACT 

This article presents a framework for pricing risky contracts and their CVAs. The model relies on 

the probability distribution of the default jump rather than the default jump itself, because the 

default jump is normally inaccessible. We find that the valuation of risky assets and their CVAs, in 

most situations, has a backward recursive nature and requires a backward induction valuation. 
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 The International Accounting Standard (IAS) 39 requires banks to provide a fair-value 

adjustment due to counterparty risk. Although credit value adjustment (CVA) became mandatory 

in 2000, it received a little attention until the recent financial crises in which the profit and loss 

(P&L) swings due to CVA changes were measured in billons of dollars. Interest in CVA began to 

grow. Now CVA has become the first line of defense and the central part of counterparty risk 

management. 

CVA not only allows institutions to move beyond the traditional control mindset of credit 

risk limits and to quantify counterparty risk as a single measurable P&L number, but also offers an 

opportunity for banks to dynamically manage, price and hedge counterparty risk. The benefits of 

CVA are widely acknowledged. Many banks have set up internal credit risk trading desks to 

manage counterparty risk on derivatives. 

The earlier works on CVA are mainly focused on unilateral CVA that assumes that only 

one counterparty is defaultable and the other one is default-free. The unilateral treatment neglects 

the fact that both counterparties may default, i.e., counterparty risk can be bilateral. A trend that 

has become increasingly relevant and popular has been to consider the bilateral nature of 

counterparty credit risk. Although most institutions view bilateral considerations as important in 

order to agree on new transactions, Hull and White (2013) argue that bilateral CVA is more 

controversial than unilateral CVA as the possibility that a dealer might default is in theory a benefit 

to the dealer. 

CVA, by definition, is the difference between the risk-free portfolio value and the true (or 

risky or defaultable) portfolio value that takes into account the possibility of a counterparty’s 

default. The risk-free portfolio value is what brokers quote or what trading systems or models 

normally report. The risky portfolio value, however, is a relatively less explored and less 

transparent area, which is the main challenge and core theme for CVA. In other words, central to 

CVA is risky valuation. 
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In general, risky valuation can be classified into two categories: the default time approach 

(DTA) and the default probability approach (DPA). The DTA involves the default time explicitly. 

Most CVA models in the literature (Brigo and Capponi (2008), Lipton and Sepp (2009), Pykhtin 

and Zhu (2006) and Gregory (2009), etc.) are based on this approach.  

Although the DTA is very intuitive, it has the disadvantage that it explicitly involves the 

default time. We are very unlikely to have complete information about a firm’s default point, which 

is often inaccessible (see Duffie and Huang (1996), Jarrow and Protter (2004), etc.). Usually, 

valuation under the DTA is performed via Monte Carlo simulation. On the other hand, however, 

the DPA relies on the probability distribution of the default time rather than the default time itself. 

Sometimes the DPA yields simple closed form solutions. 

The current popular CVA methodology (Pykhtin and Zhu (2006) and Gregory (2009), etc.) 

is first derived using DTA and then discretized over a time grid in order to yield a feasible solution. 

The discretization, however, is inaccurate. In fact, this model has never been rigorously proved. 

Since CVA is used for financial accounting and pricing, its accuracy is essential. Moreover, this 

current model is based on a well-known assumption, in which credit exposure and counterparty’s 

credit quality are independent. Obviously, it can not capture wrong/right way risk properly.  

In this paper, we present a framework for risky valuation and CVA. In contrast to previous 

studies, the model relies on the DPA rather than the DTA. Our study shows that the pricing process 

of a defaultable contract normally has a backward recursive nature if its payoff could be positive 

or negative.  

An intuitive way of understanding these backward recursive behaviours is that we can think 

of that any contingent claim embeds two default options. In other words, when entering an OTC 

derivatives transaction, one party grants the other party an option to default and, at the same time, 

also receives an option to default itself. In theory, default may occur at any time. Therefore, the 

default options are American style options that normally require a backward induction valuation. 
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Wrong way risk occurs when exposure to a counterparty is adversely correlated with the 

credit quality of that counterparty, while right way risk occurs when exposure to a counterparty is 

positively correlated with the credit quality of that counterparty. For example, in wrong way risk 

exposure tends to increase when counterparty credit quality worsens, while in right way risk 

exposure tends to decrease when counterparty credit quality declines. Wrong/right way risk, as an 

additional source of risk, is rightly of concern to banks and regulators. Since this new model allows 

us to incorporate correlated and potentially simultaneous defaults into risky valuation, it can 

naturally capture wrong/right way risk. 

 

1. Unilateral Risky Valuation and Unilateral CVA 

We consider a filtered probability space (  , F ,  
0ttF , P ) satisfying the usual 

conditions, where   denotes a sample space; F  denotes a  -algebra; P  denotes a probability 

measure;  
0ttF  denotes a filtration. 

The default model is based on the reduced-form approach proposed by Duffie and 

Singleton (1999) and Jarrow and Turnbell (1994), which does not explain the event of default 

endogenously, but characterizes it exogenously by a jump process. The stopping (or default) time 

  of a firm is modeled as a Cox arrival process (also known as a doubly stochastic Poisson process) 

whose first jump occurs at default and is defined as, 

 = 
t

s dssht
0

),(:inf      (1) 

where )(th  or ),( tth   denotes the stochastic hazard rate or arrival intensity dependent on an 

exogenous common state 
t , and   is a unit exponential random variable independent of 

t .  

It is well-known that the survival probability from time t to s in this framework is defined 

by 
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





−== 

s

t
duuhZtsPstp )(exp),|(:),(                   (2a) 

 The default probability for the period (t, s) in this framework is defined by 







−−=−== 

s

t
duuhstpZtsPstq )(exp1),(1),|(:),(               (2b) 

Two counterparties are denoted as A and B. Let valuation date be t. Consider a financial 

contract that promises to pay a 0TX  from party B to party A at maturity date T, and nothing 

before date T. All calculations in the paper are from the perspective of party A. The risk free value 

of the financial contract is given by 

 tFT
F XTtDEtV ),()( =                (3a) 

where 





−=  duurTtD

T

t
)(exp),(     (3b) 

where  tE F•  denotes the expectation conditional on the tF , ),( TtD denotes the risk-free 

discount factor at time t for the maturity T and )(ur denotes the risk-free short rate at time u 

( Tut  ). 

Next, we turn to risky valuation. In a unilateral credit risk case, we assume that party A is 

default-free and party B is defaultable. Risky valuation can be generally classified into two 

categories: the default time approach (DTA) and the default probability (intensity) approach 

(DPA).  

The DTA involves the default time explicitly. If there has been no default before time T 

(i.e., T ), the value of the contract at T is the payoff 
TX . If a default happens before T (i.e., 

Tt  ), a recovery payoff is made at the default time   as a fraction of the market value1 given 

 
1 Here we use the recovery of market value (RMV) assumption.  
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by )(V  where   is the default recovery rate and )(V  is the market value at default. Under a 

risk-neutral measure, the value of this defaultable contract is the discounted expectation of all the 

payoffs and is given by 

( ) tTTT VtDXTtDEtV F|1)(),(1),()(  +=                    (4) 

where Y  is an indicator function that is equal to one if Y is true and zero otherwise. 

Although the DTA is very intuitive, it has the disadvantage that it explicitly involves the 

default time/jump. We are very unlikely to have complete information about a firm’s default point, 

which is often inaccessible. Usually, valuation under the DTA is performed via Monte Carlo 

simulation.  

The DPA relies on the probability distribution of the default time rather than the default 

time itself. We divide the time period (t, T) into n very small time intervals ( t ) and assume that a 

default may occur only at the end of each very small period. In our derivation, we use the 

approximation ( ) yy +1exp  for very small y. The survival and the default probabilities for the 

period ( t , tt + ) are given by 

( ) tthtthtttptp −−=+= )(1)(exp),(:)(ˆ               (5a) 

( ) tthtthtttqtq −−=+= )()(exp1),(:)(ˆ               (5b) 

The binomial default rule considers only two possible states: default or survival. For the 

one-period ),( ttt +  economy, at time tt + the asset either defaults with the default probability 

),( tttq +  or survives with the survival probability ),( tttp + . The survival payoff is equal to 

the market value )( ttV +  and the default payoff is a fraction of the market value: 

)()( ttVtt ++ . Under a risk-neutral measure, the value of the asset at t is the expectation of all 

the payoffs discounted at the risk-free rate and is given by 

( )    ( ) tt ttVttyEttVtqttpttrEtV FF )()(exp)()(ˆ)()(ˆ)(exp)( +−++−=                 (6) 
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where ( ) )()()(1)()()( tctrtthtrty +=−+=   denotes the risky rate and ( ))(1)()( tthtc −=  is called 

the (short) credit spread.  

Similarly, we have 

( ) ttttVtttyEttV +++−=+ F)2()(exp)(                    (7) 

Note that ( )tty − )(exp  is ttF + -measurable. By definition, an ttF + -measurable random 

variable is a random variable whose value is known at time tt + . Based on the taking out what 

is known and tower properties of conditional expectation, we have 

( ) 
( ) ( )  

( ) ti

ttt

t

ttVttityE

ttVtttyEttyE

ttVttyEtV

F

FF

F

)2())(exp

)2()(exp)(exp

)()(exp)(

1

0
++−=

++−−=

+−=

 =

+                  (8) 

By recursively deriving from t forward over T and taking the limit as t  approaches zero, 

the risky value of the asset can be expressed as 













−=  t

T

t
TVduuyEtV F)()(exp)(            (9) 

 We may think of )(uy  as the risk-adjusted short rate. Equation (9) is the same as Equation 

(10) in Duffie and Singleton [1999], which is the market model for pricing risky bonds. Using the 

DPA, we obtain a closed-form solution for pricing an asset subject to credit risk.  Other good 

examples of the DPA are the CDS model proposed by J.P. Morgan (1999) and a more generic risky 

model presented by Xiao (2013a). 

In theory, a default may happen at any time, i.e., a risky contract is continuously defaultable. 

This Continuous Time Risky Valuation Model is accurate but sometimes complex and expensive. 

For simplicity, people sometimes prefer the Discrete Time Risky Valuation Model that assumes 

that a default may only happen at some discrete times. A natural selection is to assume that a default 

may occur only on the payment dates. Fortunately, the level of accuracy for this discrete 

approximation is well inside the typical bid-ask spread for most applications (see O’Kane and 
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Turnbull (2003)). From now on, we will focus on the discrete setting only, but many of the points 

we make are equally applicable to the continuous setting. 

For a derivative contract, usually its payoff may be either an asset or a liability to each 

party. Thus, we further relax the assumption and suppose that  may be positive or negative. 

In the case of , the survival value is equal to the payoff 
TX  and the default payoff 

is a fraction of the payoff 
TX . Whereas in the case of 0TX , the contract value is the payoff 

itself, because the default risk of party B is irrelevant for unilateral risky valuation in this case. 

Therefore, we have 

Proposition 1: The unilateral risky value of the single-payment contract in a discrete-time setting 

is given by 

 tFTXTtFEtV ),()( =      (10a) 

where 

( ) )(1),(11),(),( 0 TTtqTtDTtF
TX −−= 

    (10b) 

Proof: See the appendix. 

Here ),( TtF  can be regarded as a risk-adjusted discount factor. Proposition 1 says that the 

unilateral risky valuation of the single payoff contract has a dependence on the sign of the payoff. 

If the payoff is positive, the risky value is equal to the risk-free value minus the discounted potential 

loss. Otherwise, the risky value is equal to the risk-free value. 

Proposition 1 can be easily extended from one-period to multiple-periods. Suppose that a 

defaultable contract has m cash flows. Let the m cash flows be represented as 1X ,…, mX  with 

payment dates 1T ,…, mT . Each cash flow may be positive or negative. We have the following 

proposition. 

Proposition 2: The unilateral risky value of the multiple-payment contract is given by 

( )  =

−

= +=
m

i ti

i

j jj XTTFEtV
1

1

0 1),()( F        (11a) 

TX

0TX
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where 0
Tt =  and 

( ) )(1),(11),(),( 110))((11 11 +++++ −−=
++ jjjTVXjjjj TTTqTTDTTF

jj
        (11b) 

Proof: See the appendix. 

The risky valuation in Proposition 2 has a backward nature. The intermediate values are 

vital to determine the final price. For a discrete time interval, the current risky value has a 

dependence on the future risky value. Only on the final payment date mT , the value of the contract 

and the maximum amount of information needed to determine the risk-adjusted discount factor are 

revealed. The coupled valuation behavior allows us to capture wrong/right way risk properly where 

counterparty credit quality and market prices may be correlated. This type of problem can be best 

solved by working backwards in time, with the later risky value feeding into the earlier ones, so 

that the process builds on itself in a recursive fashion, which is referred to as backward induction. 

The most popular backward induction valuation algorithms are lattice/tree and least square Monte 

Carlo.  

The unilateral CVA, by definition, can be expressed as 

( )  =

−

= +−=−=
m

i ti

i

j jji

F XTTFTtDEtVtVtCVA
1

1

0 1),(),()()()( F       (12) 

Proposition 2 provides a general form for pricing a unilateral defaultable contract. 

Applying it to a particular situation in which we assume that all the payoffs are nonnegative, we 

derive the following corollary: 

Corollary 1: If all the payoffs are nonnegative, the risky value of the multiple-payments contract is 

given by 

( )  =

−

= +=
m

i ti

i

j jj XTTFEtV
1

1

0 1),()( F     (13a) 

where 0
Tt =  and 

( ) )(1),(1),(),( 1111 ++++ −−= jjjjjjj TTTqTTDTTF                 (13b) 
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The proof of this corollary is easily obtained according to Proposition 2 by setting 

( ) 0)( 11 + ++ jj TVX , since the value of the contract at any time is also nonnegative. 

The CVA in this case is given by 

( )( )  =

−

= ++ −−−=−=
m

i ti

i

j jjji

F XTTTqTtDEtVtVtCVA
1

1

0 11 ))(1)(,(11),()()()( F   (14) 

The current popular CVA model (e.g., equation (17) in Pykhtin and Zhu (2007) and 

equation (3) in Gregory (2009)) is quite different from above either equation (12) or equation (14). 

As a matter of fact, the current CVA model has never been rigorously proved. In order to reflect 

the economic value of counterparty credit risk, to measure the profit and loss of a bank and to 

provide proper incentives to traders, a good CVA model must be not only rigorous and accurate 

but also feasible to implement. 

 

2. Bilateral Risky Valuation and Bilateral CVA 

Two counterparties are denoted as A and B. The binomial default rule considers only two 

possible states: default or survival. Therefore, the default indicator jY  for party j (j=A, B) follows 

a Bernoulli distribution, which takes value 1 with default probability jq  and value 0 with survival 

probability jp , i.e.,  jj pYP == }0{  and jj qYP == }1{ . The marginal default distributions can be 

determined by the reduced-form models. The joint distributions of a bivariate Bernoulli variable 

can be easily obtained via the marginal distributions by introducing extra correlations. 

Consider a pair of random variables ( AY , BY ) that has a bivariate Bernoulli distribution. 

The joint probability representations are given by 

ABBABA ppYYPp +==== )0,0(:00      (15a) 

ABBABA qpYYPp −==== )1,0(:01      (15b) 

 ABBABA pqYYPp −==== )0,1(:10      (15c) 

 ABBABA qqYYPp +==== )1,1(:11      (15d) 
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where 
jj qYE =)( ,

jjj qp=2 ,   BBAAABBAABBBAAAB pqpqqYqYE  ==−−= ))((:  where AB  

denotes the default correlation coefficient and  
AB  denotes the default covariance. 

 

Table 1. Payoffs of a bilaterally defaultable contract 

This table displays all possible payoffs at time T. In the case of 0TX , there are a total of four 

possible states at time T: i) Both A and B survive with probability 00p . The contract value is equal 

to the payoff TX . ii) A defaults but B survives with probability 10p . The contract value is 
TB X , 

where B  represents the non-default recovery rate2. B =0 represents the one-way settlement rule, 

while B =1 represents the two-way settlement rule. iii) A survives but B defaults with probability 

01p . The contract value is 
TB X , where B  represents the default recovery rate. iv) Both A and B 

default with probability 11p . The contract value is 
TAB X , where AB  denotes the joint recovery 

rate when both parties A and B default simultaneously. A similar logic applies to the case of 0TX .  

State 0,0 == BA YY  0,1 == BA YY  1,0 == BA YY  1,1 == BA YY  

Comments A & B survive A defaults, B survives A survives, B defaults A & B default 

Probability 00p  
10p  

01p  
11p  

Payoff 

0TX  TX  
TB X  

TB X  
TAB X  

0TX  TX  
TA X  

TA X  
TAB X  

 
2 There are two default settlement rules in the market. The one-way payment rule was specified by 

the early ISDA master agreement. The non-defaulting party is not obligated to compensate the 

defaulting party if the remaining market value of the instrument is positive for the defaulting party. 

The two-way payment rule is based on current ISDA documentation. The non-defaulting party will 

pay the full market value of the instrument to the defaulting party if the contract has positive value 

to the defaulting party. 
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Suppose that a financial contract that promises to pay a TX  from party B to party A at 

maturity date T, and nothing before date T where tT  . The payoff TX  may be positive or 

negative, i.e. the contract may be either an asset or a liability to each party. All calculations are 

from the perspective of party A. 

At time T, there are a total of four ( 422 = ) possible states shown in Table 1. The risky 

value of the contract is the discounted expectation of the payoffs and is given by the following 

proposition. 

Proposition 3: The bilateral risky value of the single-payment contract is given by 

  ( ) tt FF TAXBXT XTtkTtkTtDEXTtKEtV
TT

),(1),(1),(),()( 00  +==   (16a) 

where 

( ))()()(1),(),(),()(

),(),()(),(),()(),(),(),(

TTTTtTtqTtqT

TtqTtpTTtpTtqTTtpTtpTtk

ABBBABABAB

ABBABBABB





+−−++

++=
  (16b) 

( ))()()(1),(),(),()(

),(),()(),(),()(),(),(),(

TTTTtTtqTtqT

TtqTtpTTtpTtqTTtpTtpTtk

ABAAABABAB

BAABAAABA





+−−++

++=
  (16c) 

Proof: See the appendix. 

We may think of ),( TtK as the risk-adjusted discount factor. Proposition 3 tells us that the 

bilateral risky price of a single-payment contract can be expressed as the present value of the payoff 

discounted by a risk-adjusted discount factor that has a switching-type dependence on the sign of 

the payoff. 

Using a similar derivation as in Proposition 2, we can easily extend Proposition 3 from 

one-period to multiple-periods. Suppose that a defaultable contract has m cash flows. Let the m 

cash flows be represented as iX  with payment dates iT , where i = 1,…,m. Each cash flow may be 

positive or negative. The bilateral risky value of the multiple-payment contract is given by 

Proposition 4: The bilateral risky value of the multiple-payment contract is given by 
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( )  =

−

= +=
m

i ti

i

j jj XTTKEtV
1

1

0 1),()( F     (17a) 

where 0
Tt =  and 

( )),(1),(1),(),( 10))((10))((11 1111 ++++++ ++++
+= jjATVXjjBTVXjjjj TTkTTkTTDTTK

jjjj
     (17b) 

where ),( 1+jjA TTk and ),( 1+jjB TTk  are defined in Proposition 3. 

Proof: The proof is similar to Proposition 2 by replacing ),( 1−jj TTF  with ),( 1−jj TTK . 

Proposition 4 says that the pricing process of a multiple-payment contract has a backward 

nature since there is no way of knowing which risk-adjusted discounting rate should be used 

without knowledge of the future value. Only on the maturity date, the value of the contract and the 

decision strategy are clear. Therefore, the evaluation must be done in a backward fashion, working 

from the final payment date towards the present. This type of valuation process is referred to as 

backward induction.  

There is a common misconception in the market. Many people believe that the cash flows 

of a defaultable financial contract can be priced independently and then be summed up to give the 

final risky price of the contract. We emphasize here that this conclusion is only true of the financial 

contracts whose payoffs are always positive. In the cases where the promised payoffs could be 

positive or negative, the valuation requires not only a backward recursive induction procedure, but 

also a strategic selection of different discount factors according to the market value in time. This 

coupled valuation process allows us to capture correlation between counterparties and market 

factors. 

 The bilateral CVA of the multiple-payment contract can be expressed as 

  ( )   =

−

= +−=−=
m

i ti

i

j jjtii

F XTTKEXTtDEtVtVtCVA
1

1

0 1),(),()()()( FF      (18) 

 

3. Numerical Results 
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In this section, we present some numerical results for CVA calculation based on the theory 

described above. First, we study the impact of margin agreements on CVA. The testing portfolio 

consists of a number of interest rate and equity derivatives. The number of simulation scenarios (or 

paths) is 20,000. The time buckets are set weekly. If the computational requirements exceed the 

system limit, one can reduce both the number of scenarios and the number of time buckets. The 

time buckets can be designed fine-granularity at the short end (e.g., daily and then weekly) and 

coarse-granularity at the far end (e.g. monthly and then yearly). The rationale is that the calculation 

becomes less accurate due to the accumulated error from simulation discretization, and inherited 

errors from calibration of the underlying models, such as those due to the change of macro-

economic climate. The collateral margin period of risk is assumed to be 14 days (2 weeks). 

For risk-neutral simulation, we use a Hull-White model for interest rate and a CIR (Cox-

Ingersoll-Ross) model for hazard rate scenario generations a modified GBM (Geometric Brownian 

Motion) model for equity and collateral evolution. The results are presented in the following tables. 

Table 2 illustrates that if party A has an infinite collateral threshold =AH  i.e., no collateral 

requirement on A, the CVA value increases while the threshold BH  increases. Table 3 shows that 

if party B has an infinite collateral threshold =BH , the CVA value actually decreases while the 

threshold AH  increases. This reflects the bilateral impact of the collaterals on the CVA. The 

impact is mixed in Table 4 when both parties have finite collateral thresholds. 

 

Table 2. The impact of collateral threshold BH  on the CVA 

This table shows that given an infinite AH , the CVA increases while BH  increases, where BH  

denotes the collateral threshold of party B and AH  denotes the collateral threshold of party A. 

Collateral Threshold BH  10.1 Mil 15.1 Mil 20.1 Mil Infinite ( ) 

CVA 19,550.91 20,528.65 21,368.44 22,059.30 
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Table 3. The impact of collateral threshold AH  on the CVA 

This table shows that given an infinite BH , the CVA decreases while AH  increases, where BH  

denotes the collateral threshold of party B and AH  denotes the collateral threshold of party A. 

Collateral Threshold AH  10.1 Mil 15.1 Mil 20.1 Mil Infinite ( ) 

CVA 28,283.64 25,608.92 23,979.11 22,059.30 

 

Table 4. The impact of the both collateral thresholds on the CVA 

The CVA may increase or decrease while both collateral thresholds change, where BH  denotes 

the collateral threshold of party B and AH  denotes the collateral threshold of party A. This reflects 

the fact that the collaterals have bilateral impacts on the CVA.  

Collateral Threshold BH  10.1 Mil 15.1 Mil 20.1 Mil Infinite ( ) 

Collateral Threshold AH  10.1 Mil 15.1 Mil 20.1 Mil Infinite ( ) 

CVA 25,752.98 22,448.45 23,288.24 22,059.30 

 

Next, we examine the impact of wrong way risk. Wrong way risk occurs when exposure to 

a counterparty is adversely correlated with the credit quality of that counterparty, while right way 

risk occurs when exposure to a counterparty is positively correlated with the credit quality of that 

counterparty. Wrong/right way risk, as an additional source of risk, is rightly of concern to banks 

and regulators. 

Some financial markets are closely interlinked, while others are not. For example, CDS 

price movements have a feedback effect on the equity market, as a trading strategy commonly 

employed by banks and other market participants consists of selling a CDS on a reference entity 

and hedging the resulting credit exposure by shorting the stock. On the other hand, Moody’s 

Investor’s Service (2000) presents statistics that suggest that the correlations between interest rates 

and CDS spreads are very small.  
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 To capture wrong/right way risk, we need to determine the dependency between 

counterparties and to correlate the credit spreads or hazard rates with the other market risk factors, 

e.g. equities, commodities, etc., in the scenario generation. 

We use an equity swap as an example. Assume the correlation between the underlying 

equity price and the credit quality (hazard rate) of party B is  . The impact of the correlation on 

the CVA is show in Table 5. The results say that the CVA increases when the absolute value of the 

negative correlation increases. 

 

Table 5. The impact of wrong way risk on the CVA 

This table shows that the CVA increases while the negative correlation  increases in the absolute 

value. We use an equity swap as an example and assume that there is a negative correlation between 

the equity price and the credit quality of party B. 

Correlation   0 -50% -100% 

CVA 165.15 205.95 236.99 

 

4. Conclusion 

This article presents a framework for pricing risky contracts and their CVAs. We find that 

the calculation of CVAs, in most situations, has a backward recursive nature and requires a 

backward induction valuation.  

An intuitive explanation is that two counterparties implicitly sell each other an option to 

default when entering into an OTC derivative transaction. If we assume that a default may occur at 

any time, the default options are American style options. If we assume that a default may only 

happen on the payment dates, the default options are Bermudan style options. Both Bermudan and 

American options require backward induction valuations.  

Based on our theory, we propose a novel cash-flow-based framework (see appendix) for 

calculating bilateral CVA at the counterparty portfolio level. This framework can easily incorporate 
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various credit mitigation techniques, such as netting agreements and margin agreements, and can 

capture wrong/right way risk. Numerical results show that these credit mitigation techniques and 

wrong/right way risk have significant impacts on CVA.  
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