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ABSTRACT 

This paper proposes a model for calculating incremental risk charge. It consisting of two 

steps. The first step simulates default, migration, and concentration in an integrated way. The 

second step is a random draws based on the constant level of risk assumption. It convolutes the 

copies of the single loss distribution to produce one year loss distribution. The aggregation of 

different sub-portfolios with different liquidity horizons is addressed. Moreover, the methodology 

for equity is also included, even though it is optional in IRC. 
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1 Introduction 

The incremental risk charge (IRC) is a new regulatory requirement from the Basel 

Committee in response to the recent financial crisis. IRC supplements existing Value-at-Risk (VaR) 

and captures the loss due to default and migration events at a 99.9% confidence level over a one-

year capital horizon. The liquidity of position is explicitly modeled in IRC through liquidity horizon 

and constant level of risk (see Xiao[2017]). 

The constant level of risk assumption in IRC reflects the view that securities and 

derivatives held in the trading book are generally more liquid than those in the banking book and 

may be rebalanced more frequently than once a year (see Aimone [2018]).  IRC should assume a 

constant level of risk over a one-year capital horizon which may contain shorter liquidity horizons. 

This constant level of risk assumption implies that a bank would rebalance, or rollover, its positions 

over the one-year capital horizon in a manner that maintains the initial risk level, as indicated by 

the profile of exposure by credit rating and concentration. 

In this paper, we present a methodology for calculating IRC. First, a Merton-type model is 

introduced for simulating default and migration. The model is modified to incorporate 

concentration. The calibration is also elaborated. Second, a simple approach to determine market 

data, including equity, in response to default and credit migration is presented. Next, a methodology 

toward constant level of risk is described. The details of applying the constant level of risk 

assumption and aggregating different subportfolios are addressed. Finally, the empirical and 

numerical results are presented. 

 

2 Simulation of Default and Credit Migration 

The IRC encompasses all positions subject to a capital charge for specific interest rate risk 

according to the internal models with exception of securitization and nth-to-default credit 
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derivatives. Equity is optional. For IRC-covered positions, the IRC captures default risk and credit 

migration risk only. 

2.1 Simulation Model 

Most of the portfolio models of credit risk used in the banking industry is based on the 

conditional independence framework. In these models, defaults and credit migration of individual 

borrowers depend on a set of common systematic risk factors describing the state of the economy. 

Merton-type models have become very popular. The Merton-type model (or standardized Merton 

model) is 

 iiiiz 
2

1−+=      (3) 

where 

 i ,   The independent standard normally random variables 

    The systematic risk 

 i   The idiosyncratic risk for issuer/obligor i 

i  The weighted correlation reflecting the impact of systematic risk factor 

on issuer/obligor i.  

iz  The normalized asset return or creditworthiness indicator for 

issuer/obligor i 

This model becomes the most popular one in default and migration risk modeling and 

yields the core of the Basel II capital rule (see Heitfield [2003]). 

Similar to the original Merton model, this model is also assuming that the default and 

migration only happens at the end, which achieves significant simplification. 

2.2 Simulation model for multiple-liquidity-horizon subportfolios 

Liquidity horizons are determined for each position to reflect actual practice and 

experience during periods of both systematic and idiosyncratic stresses. The total portfolio shall be 
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divided into the subportfolios based on different liquidity horizons. Let’s assume that there are two 

subportfolios with different liquidity horizons: 3 month and 6 month. To model different liquidity 

periods, one can use the above model (3) but calibrate different i ’s, such as, im _3  and im _6 , 

for different periods. 

  Alternatively, one can also use a multiple-period model as: 
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where i  is unique for different periods under issuer i and   is an exponentially declining weight 

(see Dunn [2008]). 

2.3 Calibration of i  

The most popular approaches to calibrate the asset correlation are Maximum Likelihood 

Estimation or regression based on time series default data. Alternatively, in the new Basel Capital 

Accord, a formula for derivation of risk weighted asset correlation for corporate, sovereign, and 

bank exposures is given as (see Tasche [2004] and Basel [2003]): 

 )1(24.012.0 iii  −+=     (6) 
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2.4 Concentration 

The phenomenon we need to model is that concentration will result a higher IRC number, 

comparing to non-concentration case. Furthermore, the more concentration a portfolio has, the 

higher IRC result it generates. To achieve this, we model the effect of issuer and market 

concentration as well as clustering of default and migration by introducing another parameter, the 

concentration parameter.   
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Our methodology is based on a simple mechanism for coupling issuer/market 

concentrations to migrations and defaults. In the simulation framework (3) or (4) and (5), the 

probability of a migration or default increases with the asset volatility.  Since the effect of 

increasing concentration within a sector is to increase the probability of migration/default events 

within that sector, we model increased concentration as an increase in the volatility of the 

systematic risk driver.  All positions sensitive to that risk driver will have an increased probability 

of migration/default events occurring. The modified simulation model is 

iitiiiz 
2

1)||1( −++=     (7a) 

Where i  is the weighted concentration factor depending on correlation between issuer default 

and migration events and  
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where if one uses (3),   = 0 and  == tt x . Otherwise,   is time declining weight and 

ktt xx −,,  are independent standard normally random variables representing systematic risks in 

different time periods. 

2.5 Calibration of i  

The calibration is based on credit migration matrix. It can be derived using either analytic 

closed-form or Monte-Carlo simulation. In theory, one can use Pearson’s product moment or 

Kendall’s  . 

2.6 Determination of default and credit migration 

The simulated asset return iz , combined with migration/default thresholds, is used to 

ascertain when default or migration is deemed to occur. The calculation of the thresholds of credit 

migration and default is based on credit migration probability (see JP Morgan [1997]). Using a 



 6 

BBB issuer as an example and given migration matrix, we can calculate the thresholds as: 

BBB
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BBB

A

BBB

BBB

BBB

BB

BBB

B

BBB

CCC

BBB

D zzzzzzz ,,,,,, . The rating bands and thresholds are shown in Figure 1 

 

 

Figure 1 Credit migration rating thresholds (for BBB) 
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2.7 Calibration of transition matrix, default probability (PD), and loss given 

default (LGD) 

The straight forward cohort approach is used to estimate transition matrices based on 

obligors’ rating history, which has become the industry standard. The PD estimate is based on EDF 

data that is used for calculation of PD benchmarked against internal default history. Internal data 

is used for LGD parameter benchmarked against relevant external proxy data. 

 

3 Constant Level of Risk 

The constant level of risk reflects recognition by regulators that securities/derivatives held 

in the trading book are generally much more liquid than those in the banking book, where a buy-

and-hold assumption over one year may be reasonable. It implies that IRC should be modeled under 

the assumption that banks rebalance their portfolio several times over the capital horizon in order 

to maintain a constant risk profile as market conditions evolve. Of course, we do not suggest that 

the constant level of risk framework be taken literally as a model of banks’ behavior: clearly 

portfolios are altered on a daily basis, not simply held constant for some period then instantaneously 

rebalanced. Rather, we regard the rollover interpretation as being a reasonable approximation to 

the way banks manage their trading portfolios over a certain horizon. In general, one should model 

constant level of risk instead of constant portfolio over one year capital horizon. 

There are several ways to interpret constant level of risk: constant loss distribution or 

constant risk metrics (e.g. VaR). We believe the constant loss distribution assumption is the most 

rigorous. Under this assumption, the same metrics (e.g. VaR, moments, etc.) can be achieved for 

each liquidity horizon.  



 8 

The liquidity horizon for a position or set of positions has a floor of three months. Let us 

use three months as an example. We interpret constant level of risk to mean that the bank holds its 

portfolio constant for the liquidity horizon, then rebalances by selling any default, downgraded, or 

upgraded positions and replaces them so that the portfolio is returned to the level of risk it had at 

the beginning. The process is repeated 4 times over the capital horizon resulting 4 independent and 

identical loss distributions. The one year constant level of risk loss distribution is the convolution 

of 4 copies of the three month loss distribution. In Monte Carlo context, this can be modeled by 

drawing 4 times from the single period loss distribution measured over the liquidity horizon. 

The total PnL is the summary of these 4 random draws. 

An intuitive explanation is shown in Figure 2. A generic path with appears in red; P&L 

contributions from each liquidity horizon appear in blue. In this schematic, the position experiences 

downgrade, upgrade or default, resulting in a loss or profit.  This position is then removed and 

replaced at the end of each liquidity horizon by rebalancing. The final P&L for the path will be the 

summary of all losses and profits. 

 

 

 

 

 

 

 

 

   Figure 2 Constant level of risk 
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In addition, one needs to consider the reinvestment of all cash flows realized during the 

liquidity horizon and rollover of expired deals. 

 

4 Aggregation and Time Horizon Correlation 

First we need to divide the portfolio into the subportfolios based on liquidity horizons. If 

there is only one single-liquidity-horizon subportfolio, the rebalance at the end of each liquidity 

horizon washes out the time horizon correlation. However, if there are multiple subportfolios, the 

time horizon correlations need to be addressed. 

To elaborate the details, we assume there are two subportfolios with liquidity horizons: 3 

months and 6 months. Based on the default and migration simulation and full re-valuation, we can 

generate loss distributions at first liquidity horizons for 3-month and 6-month subportfolios as 

mPL3 , and mPL6 . 

There are two approaches to achieve the correlative aggregation: copula approach or 

correlation matrix approach.  

4.1 Copula approach 

We conduct the second Monte Carlo simulation by generate 4 standard normal random 

draws for scenario j: 
jjjj xxxx 4321 ,,., . These random draws represent a Monte-Carlo path. 

4.1.1 Three-month Subportfolio 

The P&L distribution of three-month subportfolio is mPL3 . The four draws of loss 

distribution are ( ) ( ) ( ) ( ))(,)(,)(,)( 43332313

j

m

j

m

j

m

j

m xPLxPLxPLxPL  , where   is the 

accumulative normal. The total P&L of the three-month subportfolio for scenario j is 
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=

=
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i
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j

mtotal xPLPL     (18) 

4.1.2 Six-month Subportfolio 
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The P&L distribution of the six-month subportfolio is mPL6 . We can calculate correlation 

),( 63 mm PLPL  between 
mPL3

 and 
mPL6

 using Pearson product-moment. The two correlated 

random draws are 
j

mm

j

mm

j

m xPLPLxPLPLx 2

2

631631_6 ),(1),(  −+=  and 
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2

633632_6 ),(1),(  −+= . The two draws of loss distribution are 

( ) ( ))(,)( 2_661_66

j

mm

j

mm xPLxPL  . The total P&L of the six-month subportfolio for scenario j is 
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j
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Summing up (18) and (19), we can get the total P&L for scenario j as 

  
j

mtotal

j

mtotal

j

total PLPLPL 3_6_ +=     (20) 

4.2 Correlation matrix approach 

Based on the four 3-month independent identical loss distributions: 

mmmm PLPLPLPL 3333 ,,, , and two 6-month independent identical loss distributions: 

mm PLPL 66 , , we can construct a 66  pair-wise sample correlation matrix  . Applying the 

Cholesky decomposition to the correlation matrix  , we have 
TLL= , where L  is a lower 

triangular matrix.  

We conduct the second Monte Carlo simulation by generating 4 independent standard 

normal random draws: 
jjjj xxxx 4321 ,,.,  for the four 3-month periods in a year and 2 independent 

standard normal random draws 
jx5 , 

jx6  for the two 6-month periods to construct a path/scenario j. 

The random draw vector is  jjjjjj xxxxxxX 654321= . We can obtain correlative random 

draw vector  

 jjjjjj xxxxxxX 654321
~~~~~~~

=  by 
TT XLX =

~
   (21) 
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The total P&L for scenario j is 
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The final IRC will be 99.9% VaR based on distribution 
j

totalPL . In general, the correlation 

matrix approach is more generic and can be easily extended to any number of subportfolios. 

 

5 Numerical and Empirical Results 

The above methodology has been implemented. The empirical study shows the results on 

P&L distributions, numerical stability & convergence, concentration effect, and capital impact.  

The loss distributions for the testing portfolio are shown in Figure 3 and 4. 

 

 

Figure 3 Histogram of loss distribution at 3 month 
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Figure 4 Histogram of loss distribution at 1 year 

 

5.1 Convergence study 

People normally believe that 50,000 simulations provide sufficient stability to measure the 

99.9th percentile loss required for the regulatory IRC measure. However, our study shows that 

50,000 paths are not convergent. Actually 100,000 simulations are needed to archive a better 

numerical stability and convergence. The results are shown in Table 1 

 

Table 1 convergence results 

Scenarios IRC Diff from previous Diff from average 

8,000.00 102.31  -1.51% 

10,000.00 103.56 1.23% -0.30% 

20,000.00 100.44 -3.01% -3.30% 

40,000.00 100.71 0.27% -3.04% 

60,000.00 110.01 9.23% 5.91% 

80,000.00 105.22 -4.35% 1.30% 

100,000.00 104.90 -0.31% 0.99% 

pdf: one year loss distribution
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120,000.00 103.66 -1.18% -0.20% 

140,000.00 103.96 0.28% 0.08% 

160,000.00 103.61 -0.33% -0.25% 

180,000.00 105.23 1.56% 1.31% 

200,000.00 103.14 -1.99% -0.71% 

Average 103.87   

 

5.2 Concentration study 

The purpose of this section is to demonstrate that the model (7) can reflect issuer and 

market concentrations. To simplify our tests, we assign all issuers with the same concentration 

factor  . It is shown that the IRC increases according to the increasing of  , up to 30% in table 2. 

 

Table 2 Concentration study 

Scenarios   IRC Diff from 0 concentration 

100,000 0 104.90 0 

100,000 0.2 116.97 11.50% 

100,000 0.4 122.37 16.66% 

100,000 0.6 128.49 22.48% 

100,000 0.8 132.83 26.63% 

100,000 1 137.23 30.82% 
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